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Abstract
fully automatic colorization methods have made impressive progress by formulating image colorization as a pixel-wise

Grayscale image colorization is an important computer graphics problem with a variety of applications. Recent

prediction task and utilizing deep convolutional neural networks. Though tremendous improvements have been made,
the result of automatic colorization is still far from perfect. Specifically, there still exist common pitfalls in maintaining
color consistency in homogeneous regions as well as precisely distinguishing colors near region boundaries. To tackle these
problems, we propose a novel fully automatic colorization pipeline which involves a boundary-guided CRF (conditional
random field) and a CNN-based color transform as post-processing steps. In addition, as there usually exist multiple plausible
colorization proposals for a single image, automatic evaluation for different colorization methods remains a challenging task.
We further introduce two novel automatic evaluation schemes to efficiently assess colorization quality in terms of spatial
coherence and localization. Comprehensive experiments demonstrate great quality improvement in results of our proposed
colorization method under multiple evaluation metrics.

Keywords automatic colorization, deep learning, conditional random field (CRF), color transform, quality evaluation

1 Introduction mulated as a pixel-wise regression problem in com-
puter version and the effectiveness has been proven
by Cheng et all'fl and Dahl'”l. Over the past few
months, Larsson et al.l'8! and Zhang et all'®! both

introduced classification-based colorization frameworks

Image colorization aims to convert grayscale im-
ages into colorful ones. This task has attracted a lot
of research in computer graphics due to its practical
application values, such as colorizing old photographs

With user-assisted
7-14]

and assisting creative workl1-15] built on deep convolutional neural networks (DCNNs).

_ traditional In order to produce colorization results with higher sat-

scribbles!'5] or reference color images!
research mainly focuses on developing better coloriza-
tion systems with less user interactions and time con-
sumption. Interestingly, human can effortlessly judge
suitable colors for different regions just by a quick

glance of a grayscale image. In order to make this pro-

uration and fidelity, they both learned pixel-wise la-
beling models over discrete color bins. Furthermore,
Zhang et al.l'9 applied class re-balance during training
and achieved the state of the art. Though significant
improvement has been made in [18-19], there are obvi-

cess possible for a colorization system, recent research
focuses on fully-automatic colorization techniques. Ide-
ally, an automatic colorization system takes grayscale
images as input and generates visually plausible color
versions directly. This problem can be readily for-

ous drawbacks existing in maintaining color consistency
in homogeneous regions as well as in precisely distin-
guishing colors near region boundaries. For example in
Fig.1, Figs.1(a) and 1(d) show the top-1 color predic-
tions produced by [19]. Inconsistent color assignments
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(a) (b) (c)

Fig.1. Comparison with leading method proposed by Zhang et al.['9] (a) (d) Top-1 color predictions results by Zhang et al.l'9) (b)
(e) Final results of Zhang et al.['¥] by calculating the expectation over color bins. (c) (f) Our results generated by our method which
improve spatial consistency using CRF and chromatic resolution by color transform CNN.

can be commonly observed even in simple images with
single object and uncomplicated background. Further-
more, the poor localization of object boundaries often
leads to color bleeding. Hence, even though the color
prediction for major parts of images is correct, people
can easily discover unreal colorization from such phe-
nomena. Obviously, such existing shortages reveal that
high-quality automatic colorization remains a challeng-
ing task.

In this paper, we propose a novel pipeline which
aims to improve the spatial coherence and boundary
localization in colorization. Fully-connected condi-
tional random field (CRF) has been widely used to
improve the spatial accuracy in general DCNN-based
image labeling tasks, such as semantic segmentation,
in which inputs are usually color images.
colorization models only take grayscale images as in-
put without any chromatic information, making it ex-
tremely hard to capture edge details and local consis-
tency for a fully-connected CRF. To address this prob-

However,

lem, we present a boundary-guided local CRF which
is capable of improving pixel-wise color labeling re-

sults of DCNNs. Since the ultimate goal of coloriza-
tion is to predict suitable color values for each pixel
instead of fixed color category, one essential step at
the end is to infer continuous values from labeling re-
sults. Current colorization system simply calculates the
expectation’! or takes the median valuel*®! over his-
togram bins. However, as shown in Figs.1(b) and 1(e),
such method brings no improvement but a blurry effect.
In this paper, we introduce a color transform CNN to
learn a better inference. As shown in Figs.1(c) and 1(f),
our final results achieve significantly improved quality
both locally and globally.

We further introduce two novel evaluation schemes
to automatically evaluate colorization quality in terms
of regional consistency and boundary localization re-
spectively on large datasets.

In summary, our contributions in this paper can be
summarized as follows.

e We introduce a novel automatic colorization
framework based on DCNN. With a boundary-guided
local CRF and a color transform CNN as post-
processing steps, our system not only is capable of cap-
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turing detailed edge information from grayscale images
to facilitate better color labeling, but also learns a map-
ping from labeling results valued in fixed color bins to
final color values.

e We develop two novel schemes for efficient qua-
lity evaluations through a large number of automatic
colorization results. Our proposed evaluation schemes
reflect human’s common preference for high-quality col-
orizations. Experimental results illustrate our coloriza-
tion method achieves much better performance than
previous methods under both evaluation schemes.

2 Related Work

We review recent automatic colorization systems
and existing evaluation criteria in this section.

Automatic Colorization. Fully automatic coloriza-
tion could be formulated as a pixel-wise prediction
problem which is targeted at transforming one gray
image to its color version. Cheng et al.l'fl first at-
tacked this problem by exploring a combination of
different levels of handcrafted features for each pixel.
They attempted to predict chromatic values using neu-
ral network with Lo regression loss. Recently, end-to-
end deep CNN features demonstrate considerably su-
perior performance compared with traditional hand-

[20-26]  Hence it

crafted ones in extensive vision tasks
is not surprising with state-of-the-art deep CNN archi-
tectures, Dahl['7l obtained better results than [16] even
though the loss function is still Lo regression. lizuka
et al.l?”) generated promising results on scene-centered
photographs through taking advantage of a two-steam
DCNN architecture where a joint training strategy is
used to fuse scene classification cues. More recently,
[18-19] further address the underlying label uncertainty
problem in automatic color prediction by formulating
colorization as a pixel-wise labeling problem instead
of regression. Typically, they first divide color space
into discrete bins and then trained a DCNN to predict
Their DCNN

architectures are close in spirit: Larsson et al.'8] used

the probability distribution over bins.

hyper-columns?®! of multiple feature maps while Zhang
et al." adopted dilated convolutions®”) and layer con-
catenation. In addition, Zhang et al.l'9 figured out
the problem of extremely unbalanced distribution over
color bins through introducing class-rebalancing during
training, which helps to boost the performance to the
state of the art.

Evaluation Criteria. The ultimate goal of an auto-
matic evaluation is to determine the consistency of the
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generated colorization results with human expectation.
It is a non-trivial task specially because in most cases,
there exist multiple reasonable color schemes which ap-
pear to be both realistic and vibrant for one grayscale
image. Though each grayscale image in the testing
set1819 has corresponding color version as ground-
truth, simply expecting exactly the same colorization
results as ground-truth is overly strict. Here we sum-
marise existing evaluation criteria for automatic colo-
rization systems.

Direct pixel-wise comparison:

e PSNR: peak signal-to-noise ratio in RGB color
spacel16:18].

e RMSFE and Raw Accuracy: root mean square error
in a, b color space over all pixels!*819;

e Rebalanced Raw Accuracy: re-weights the raw
pixel distance inversely by color class probability'?).

Semantic interpretability:

e Image Classification: feeds automatically colo-
rized images and corresponding ground-truth images
respectively to an off-the-shelf image classifier which
is trained on real color images; compares their results
in classification accuracy[lg].

User-assisted evaluation:

e Naturalness: users are asked to answer “Does this
image look natural to you?” after observing each sam-
ple image within a limited time[27);

e (Color Turing Test: one real image and the re-
colorized counterpart are presented to participants to-
gether, and then the participants are asked to point out
the fake onel'9.

Among existing evaluation criteria,
methods based on direct pixel-wise comparison expect
same color values as ground-truth; thus they are overly
strict. Moreover, it is hard to prove the consistency
between image classification accuracy and colorization
quality. User-involved studies directly reflect human’s
observation but are too costly when dealing with large
datasets. As far as we know, no existing criterion has
taken into consideration common artifacts like regional
inconsistency and color bleeding which are widespread
in current colorization models. To address these limi-

evaluation

tations, we propose two novel evaluation schemes which
consider regional inconsistency and color bleeding arti-
facts into quality evaluation of colorization.

3 Algorithm

Our full pipeline can be formulated as a function F),
which maps a single channel input image X € R *Wx1
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to two color channels a, b Y € REXWx2 iy CIELab
color space, where H, W are spatial dimensions:

Y = F(X).

We denote Y as the a, b channels of the ground-truth
color image. Y is expected to be close to Y during
the learning procedure. The overview of the proposed
pipeline is illustrated in Fig.2. It consists of three main
phases: an initial colorization model, boundary-guided
conditional random field (CRF), and a color transform
convolutional neural network (CNN). Firstly, the target
grayscale image is fed to a classification-based coloriza-
tion model which generates a probability distribution
over discrete color bins for each pixel. Secondly, we cal-
culate the unary term of CRF based on the predicted
probability distribution. When calculating the pair-
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wise affinity of CRF, we involve boundary cues which
are obtained by an off-the-shelf boundary detector from
the input grayscale image. With such boundary-guided
CRF, we aim to improve the spatial coherence of the
initial labeling result. Subsequently, to infer final con-
tinuous color values, we adopt a CNN to learn a trans-
formation from discrete color bins to continuous color
values. In the reminder of this section, we will elaborate
the three phases sequentially.

3.1 Initial Colorization

To obtain a good initial prediction result over color
bins, we adopt a state-of-the-art deep colorization
CNNU as our initial colorization model. Following

[19], we divide a, b two-dimensional plane into Q) = 313

HXWx10
> NR—
» Pairwise B >
/ Affinity T
P
Grayscale T Color Features » &
Input T
Boundary J HXWX10 HXWX10
Detection ) T~ - Color — =
: [’J q ——+>| Transform |—
= - CNN — N/
Boundary Thinned »
Boundary CRF Transform
Colorization| }, Unary Result Parameters
Net  Term (RGB) v
. . 7 MP
i Prediction Local CRF CNN-Based Color Transform! Final
= ! Result
(a)

Prediction from Initial
Colorization Model

Grayscale Input

Boundary

CRF Color
Labeling Result

Our Final Result

(b)

Fig.2. (a) Overview of our full pipeline for automatic colorization. (b) Example images of each phase in our pipeline.
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bins and learn a pixel-wise classification model from
input grayscale image via deep CNN in an end-to-end
manner:

P = G(X),

where G denotes the deep CNN and P € [0, 1]H*Wx@Q
represents the predicted probability distribution over
color bins. Unlike in [19] where the expectations over
color bins are calculated as the final color values, we
further adopt a boundary-guided CRF to improve spa-
tial coherence in labeling result.

3.2 Boundary-Guided CRF

Let ¢(i) be the expected color label for pixel p;, and
P; 4(:) be Ehe probability of assigning color label ¢(i) to
pixel p;. P; 4¢;) can be predicted by the initial coloriza-
tion DCNN. The standard energy function of local CRF
is defined as follows.

E((f)) = Eunary + 'YEpair; (1)
where
Eunary - Z log ﬁi,qﬁ(i)a (2)
Epair = Z Z UﬁjT((ﬁ(“, ¢(J))a (3)
i pi€Nn(p,)
where

L £12
g = exp (AL B
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Let ® be the color transform CNN. Let Z.., and
Tr.ap represent the initial colorized image outputted
by boundary-guided CRF in RGB and CIELab color
space respectively. We use U to denote the feature

Transform
Parameter for —

Channel a

—
s \

Ny

1
[ — -2
Exsoe =
H
512 PReLU 512 PReLU 256 PReLU
CRF Result
in RGB Transform
Parameter for [ |7 W
Channel b 10

Fig.3. Architecture of color transform CNN.

Table 1. Color Transform CNN Architecture
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4 Spatial-Consistency Evaluation

In this section, we introduce two novel evaluation
schemes to efficiently measure color consistency and
boundary contrast consistency in generated colorful im-
ages.

4.1 Regional Color Consistency

Regional color consistency is one of the key factors
for plausible colorization results. In real color images,
different levels of chromatic variations can be observed
in variant semantic regions: some regions are visu-
ally homogeneous while others may contain textures or
be photographed under complex lighting environment.
Though knowing nothing about the ground-truth, peo-
ple can effortlessly judge unreal colorization once cap-
turing inconsistent colors in homogeneous regions. Such
observation indicates that measuring color variations in
homogeneous regions is a promising strategy for evalu-
ating colorization quality. Based on this, we propose to
evaluate colorization quality by sampling a pixel group
in each homogeneous region, and then calculating its
color variation.

One example of the proposed evaluation scheme is
shown in Fig.5. For each testing image, the ground-
truth color version is transformed to CIELab color
space, in which the L. channel represents lightness and
a, b represent color-opponent dimensions. We first per-
form graph-based segmentation®3! to generate super-
pixels. Note that in order to weaken the interference of
lightness variations, graph-based segmentation is ope-
rated on pixelwise color vectors f. = (kx1,a,b)T where
k is used for controling the weakening degree of the L
channel. We collect one representative pixel which is
spatially closest to its centroid, from each superpixel.
Due to large color variation in the whole image, it is un-
reasonable to directly calculate color consistency over
all representative pixels. Thus, we merely evaluate on
pixel groups which locate in homogeneous regions.

Subsequently, we perform a fast hierarchical seg-
mentation using MCGP4 to each ground-truth image
and discard small segments which are below the ave-
rage spatial size. In each remaining segment, we select
one group from representative pixels with an identical
color value that is closest to the mean value of this seg-
ment in a, b channels. We further discard pixel groups
which contain fewer than S, pixels. Finally, we repeat
the same selection scheme for all testing images, thus
obtaining all pixel groups.

J. Comput. Sci. & Technol., May 2017, Vol.32, No.3

We denote the i-th pixel group in image j as Gyj.
Our regional color consistency evaluation is defined as
follows:
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4.2 Boundary Localization

Poor color discrimination along boundaries is an-
other key factor which leads to the unreality of the
generated colorization results. For example, Fig.6(c)
shows the generated colorization result of [19]. This
model predicts suitable color for dog, sofa and carpet
separately, but color bleeding across boundaries can be
observed, e.g., colors for the dog bleed over its boun-
dary. Hence, we propose another approach to evaluate
colorization quality in terms of boundary localization.

(c) (d)

Fig.6. One example of color bleeding evaluation. (a) Selected
boundary sections for evaluation from ground-truth color image.
(b) Selected pixel groups (shown in green color) on both sides of
boundaries. (c) State-of-the-art colorization result by [19]. (d)
Our result.

Fig.6 illustrates one example of our boundary locali-
zation evaluation scheme. For each ground-truth color
image, we obtain its boundary map via HED[2¢ boun-
dary detector, and then threshold the resulted boun-
dary map by 0.5 followed by an edge thinning operation.
We subsequently divide boundaries into short sections
using a boundary subdivision method®¥ which involves
a recursive boundary breaking procedure. Among the
results, boundary sections with less than S, pixels are
not considered. Afterwards, for each pixel located on
resulted boundary sections, we sample r pixels along
the local boundary normal on both sides. In this way,
two pixel groups are sampled on both sides of each se-
lected boundary section. We calculate the variation of
the i-th boundary section as below,

OL,i = OL,i,a T OL,i,b,
OR,i = OR,i,a T OR,i,b,

0; = 0L, + OR,

where o7, ; and op,; represent the stand deviation of se-
lected pixel group from the left and the right hand side
of boundary section i respectively. The subscripts a,
b denote color channels in CIELab color space respec-
tively.
large variations by setting a low threshold Ty for o;.
Resulted boundary sections and sampled pixel groups
on both sides provide the target locations for evalua-
tion.

We further filter out boundary sections with

Finally, we define a localization evaluation criterion
by calculating the color variation in colorized images
according to target evaluation locations:

1
W, = —
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of pixels within certain distance from 0 to 150. Hence,
higher AuC score indicates smaller distance between
colorization results and ground-truths. The evaluation
results are shown in Fig.7. As shown in Fig.7, except
[17] and grayscale images, the AUC scores of all the
other three methods (including ours) are almost equal,
with variation within 0.5%. Thus we conclude that
regional color inconsistency and color bleeding pheno-
mena, which apparently bring great visual defect, can-
not be reflected under the AuC metric. A visual compa-
rison is demonstrated in Figs.8 and 9.

g 1.0
=1
s
N
A
0.8
g 0.9
= 0.8
= 0.6
M 0.7
2
0.6
E;) 0.4 10 20 30 40
7 [AUC = 93.37%]Dahl!""
~ [AUC = 93.20%]Grayscale
T 0.2 — [AUC = 94.25%]lizuka et al.l
2 —— [AUC = 94.51%]Zhang et al.l')
3 [AUC = 94.42%]Ours
2 0.0 L L
Z 0 50 100 150

Percentage

Fig.7. Comparing rebalanced Euclidean distance in a, b color
channels. A sub-figure that locates in the up-right corner shows
the enlarged curve.

5.3 Consistency Evaluation Results

Following the proposed point group selection scheme
introduced in Subsection 4.1, 5525 images are selected
from testing images for evaluation. Then our proposed
color consistency measurement is performed on loca-
tions of selected pixel groups in each testing image.

Table 2 lists the evaluation results using the pro-
posed color consistency criterion. As shown in the
table, our colorization results significantly achieve the
lowest color variations in homogeneous regions when
compared with other leading colorization methods. Be-
sides, we observe that the CNN-based color trans-
form slightly improves the regional color consistency,
although it is not initially designed for this purpose.

Table 2. Color Consistency Evaluation Results

J. Comput. Sci. & Technol., May 2017, Vol.32, No.3
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(b)

Fig.8. Comparison with leading automatic colorization methods. (a) Dahl'7). (b) Tizuka et al.2”) (c) Zhang et al.19 (d) Ours. (e)
Ground-truth.
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Fig.9. Comparison with leading automatic colorization methods. (a) Grayscale input. (b) Dahl(!7l. (c) Tizuka et al.l?7] (d) Zhang et
al. (e) Ours.
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state-of-the-art colorization method. Besides, during
our user study, several participants mention that they
clearly decide their preference by capturing the color
bleeding phenomena, which is consistent with our pro-
posed evaluation schemes.

40
35

30

25 l

20 II 1

15

10 B Ours Is Better |
Hard to Decide
[ Zhang et al.' Is Better

0 LILLLL]]

6 8 10 12 14 16 18

Number of Users

Number of Image Pairs

Fig.10. Results of user study. We compare our method and a
state-of-the-art method from Zhang et al.!19 in terms of natu-
ralness.

6 Conclusions

In this paper, we proposed post-processing steps
for automatic image colorization, which involve a
boundary-guided CRF and a CNN-based color trans-
form model. Extensive experimental results demon-
strated that our proposed methods greatly improve
the colorization quality compared with current leading
methods. To prove the effectiveness of our proposed
methods, we further introduced two novel evaluation
schemes to quantitatively measure the quality of auto-
matically colorized images in terms of color consistency

and boundary localization.
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